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a b s t r a c t

The quality coefficient (Q) has frequently been used to select weighting formulae in calibration, and espe-
cially so in bioanalytical work, where there has been increasing awareness of the importance of data
heteroscedasticity in recent years. However, this quantity is statistically flawed and should not be used
for this purpose. The quality coefficient is computed from the differences between the apparent and true
concentrations of the calibration samples as obtained from the least-squares calibration fit. Q is defined
as the sum of either the squares or the absolute values of these differences, taken directly or as percentage
(relative) deviations. It is calculated for several different trial weighting formulae, and the lowest Q value
is then deemed to identify the best weighting choice. However, these Qs are predisposed to favor data
consistent with their definitions—homoscedastic data for tests employing absolute differences, and data
eteroscedasticity having proportional error (constant coefficient of variance) for tests using relative differences—because
the Q in each case closely resembles the quantity actually minimized by the least-squares fit of the cali-
bration data. The problem is examined and illustrated through Monte Carlo computations on data having
either constant or proportional uncertainty and subjected to both tests. A modified Q based on the results
of both the absolute and relative tests is much more reliable than either test alone but is still not recom-
mended as a solution to the weighting problem, as other, statistically sound approaches are available and
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readily used.

. Introduction

In classical univariate calibration, n calibration points (xi, yi)
efine a calibration curve (y = f(x)), and the amount of the unknown
x0) is determined by solving the equation y0 = f(x0), where y0 is
he response for the unknown. In its simplest and most widely
sed implementation, the response function is assumed to be linear
y = a + bx), the values of the independent variable x for the calibra-
ion data are taken to be error-free, and the response variable y
s assumed to possess normally distributed random error of con-
tant standard deviation �. Unweighted linear regression (ordinary
east squares, or OLS) is used to obtain estimates of the calibration
arameters a and b, from which x0 = (y0 − a)/b [1,2].

The limitations of this calibration procedure in bioanalytical
ork have increasingly been recognized in recent years, especially
he need for weighted regression (weighted least squares, or WLS)
o accommodate the often strong heteroscedasticity in the data for
hromatographic techniques [3–11]. The interest in better calibra-
ion is driven in part by government guidelines and regulations,
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xisting or proposed [10,12–15]. For the usual straight-line cali-
ration, heteroscedastic data lead to altered equations for a and
, through the incorporation of weights wi in the sums that occur
n the LS equations (see below). Statistical theory shows that the

eights should be taken as wi ∝ 1/�2
i

, where �i is the standard
eviation in y for the ith calibration value [16]. This ensures that
he estimates of the parameters will be minimum variance; any
ther choice must yield less precise estimates of the calibration
arameters and hence of the unknowns to be determined with
he calibration curve. Further, incorrect weights lead to wrong esti-

ates of the actual uncertainties [17].
In many bioanalytical techniques, including chromatographic

ethods, replicate measurements typically display greater spread
t large x (and y) than at small [4–6,8,11]. This means that the data
ariance �2 is increasing with x, and the effect of taking this into
ccount through WLS is to place more emphasis on the small-x data
hat largely determine the intercept for the calibration line. This in
urn lowers the percent error of calibration at small x, which can

ignificantly improve unknown determinations in this important
egion. To handle the data heteroscedasticity, many workers have
mployed weights proportional to 1/x, 1/y, 1/x2, or 1/y2, often in
rial-and-error fashion, with the results judged by a “quality coeffi-
ient” (Q), the minimum value of which is said to identify the best

http://www.sciencedirect.com/science/journal/15700232
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eighting function. The primary purpose of the present contribu-
ion is to demonstrate that this assumption about the significance
f Q is fundamentally flawed, because this parameter is predisposed
o prefer data consistent with its definition.

The quality coefficient has a long history [18]. Knecht and Stork
19] proposed the quantity

rel = 1
n − 1

∑(
xci − xi

xi

)2
, (1)

here xci is the value of x computed for the ith yi value from the
alibration formula, xci = (yi − a)/b, and n is the number of calibra-
ion data values. This definition was utilized by some later workers
20,21]; however, others [22,23] preferred a definition equivalent
o

abs =
∑

(xci − xi)
2
, (2)

hich Vankeerberghen and Smeyers-Verbeke noted was appro-
riate for data having constant uncertainty rather than constant
elative uncertainty [24]. Recently, Almeida et al. used a quantity
imilar to Qrel, except with the summand being the absolute value
f the ratio instead of the square [8]. This choice has been heavily
sed subsequently in bioanalytical applications of chromatography
25–33]. I will refer to this as Q ′

rel below. For completeness, I define
′
abs as the analog of Qabs involving the sum of the absolute values.

In view of this heavy reliance on Qs to judge weighting formulas
or calibration, it is important to understand their limitations. These

tests are self-fulfilling: Use of Qabs and Q ′
abs lead overwhelmingly

o the conclusion that the data are homoscedastic, while Qrel and
′
rel pick heteroscedasticity with proportional error (constant coef-
cient of variance), regardless of the true error structure of the data.
he reason is that these tests are closely related to the quantities
ctually minimized in the respective LS fits. In the present work,
hese limitations are demonstrated through Monte Carlo (MC) com-
utations in which synthetic data having the approximate structure
f those used by Almeida et al. [8]—six calibration xi values from
.1 to 15, with replicates—are generated and then fitted using OLS
nd WLS with 1/x2 weighting, followed by computation of all four
s defined above. A single MC computation includes 105 equiva-

ent data sets, and the computations are performed for data that
re homoscedastic or have proportional error, �i ∝ xi, since these
re the limiting error structures typically encountered in data that
re fitted directly (i.e., without transformation). The tests include
ependence on the numbers of replicates (1–8) at each calibration
alue, and the partitioning of these into calibration and test data.
n each case, the statistics of wrong decisions are accumulated for
hese tests, and for a combined test that shows a much better over-
ll performance. The tests are confined to data that follow a linear
esponse function, and to just these two error structures and their
orresponding LS fits. They show that use of just absolute or rel-
tive differences alone can be wrong more than 90% of the time;
ut use of a combined test yields the wrong decision <2% of the
ime for heteroscedastic data (�i ∝ xi) and <7% for homoscedastic,
ith squared differences being slightly better than absolute values,

nd with only two replicates sufficing to achieve this reliability for
eteroscedastic data.

Even though the new combined Q test displays much better per-
ormance than the currently used versions, it is still largely limited

o deciding between constant and proportional data error and is not
ecommended as a general solution to the weighting choice prob-
em. Methods like variance function estimation from replicates or
y generalized LS directly address the problem of determining the
ata variance and are thus much to be preferred [6,17,34–37].
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. Least squares background

For the response function, y = a + bx, the LS equations are
btained by minimizing the sum of weighted, squared residuals,

=
∑

wiı
2
i =

∑
wi(yi − a − bxi)

2
(3)

ith respect to a and b, where yi is the measured value of y at x = xi.
he resulting equations are [1,2]

aSw + bSx = Sy

aSx + bSxx = Sxy
(4)

here Sw =
∑

wi, Sx =
∑

wixi, Sxx =
∑

wix
2
i
, Sy =

∑
wiyi, and

xy = ∑
wixiyi. The solutions to these equations are

a = D−1(SxxSy − SxSxy)
b = D−1(SwSxy − SxSy)

(5)

here D = Sw Sxx − S2
x . If the data yi are unbiased estimates of y

t xi, the estimates of the parameters a and b will also be unbi-
sed. If further, the data are normally distributed (i.e., have Gaussian
rror) about their true y values, the parameter estimates will also
e normally distributed about their true values; and if the weights
re taken as wi = 1/�2

i
, the parameter estimates will be minimum-

ariance estimates, with variances given by

�2
a = Sxx/D

�2
b

= Sy/D
(6)

From these equations, it can be seen that OLS is just a special
ase of WLS. Furthermore, if the �i are known absolutely—as, e.g.,
n Monte Carlo calculations, where they are used to set the scale
f the error on the synthetic data—Eq. (6) are exact. In the context
f MC computations on such models, this means that one expects
istograms of a and b to follow the Gaussian distribution with zero
ias and with �a and �b values given by Eq. (6), within the statistical
eliability of the MC computation. For N = 105 replicate data sets, the
C average of a should fall within �a/N1/2 of its true value 68% of

he time, and similarly for b [38]. Sampling estimates of standard
eviations have relative uncertainty (2�)−1/2, where � = the number
f degrees of statistical freedom; thus the MC sampling estimates
2
a and s2

b
should be within 0.22% of the values given by Eq. (6) 68%

f the time for N = 105.
Since the data error is presumed to be known a priori in Eq.

6), these expressions constitute a priori values of the parameter
ariances. Usually in OLS one presumes no advanced knowledge of
he scale of the error (just that it is constant) and takes wi = 1. Then
he data error is estimated from the fit itself, as s2

y = S/v = S/(n − 2).
ccordingly one must scale the right-hand sides of Eq. (6) by s2

y to
btain the corresponding a posteriori estimates s2

a and s2
b

(which
ary from data set to data set in MC computations, since s2

y also
aries). The same scaling procedure is required for heteroscedastic
ata when the wi are known in only a relative sense, in which case
/� is known as the “estimated variance for data of unit weight.”
rom Eqs. (3)–(5) it can be seen that the values for a, b, s2

a , and
2
b

are independent of a constant scale factor in the wi. However,

f the wi are not correctly taken as ∝�−2
i

, there are two immedi-
te consequences: (1) the parameter variances will be larger than
he minimum-variance values; (2) Eq. (6) will not correctly predict
he actual results. The magnitudes of these flaws depend upon the
tructure of the data set and the variability of �i and wi over the

ange of xi [17].

With wi = 1, the quantity minimized in OLS is similar to the test
uantity in Qabs; and the first of Eq. (4) ensures that

∑
(xci − xi) = 0.

imilarly the use of wi ∝ 1/x2
i

is nearly equivalent to minimizing
he relative error in y; and the second of Eq. (4) can be rewritten
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Fig. 1. Results of applying the Q tests to homoscedastic (top) and heteroscedastic
data models, as functions of the number of replicate data sets taken. Round symbols
refer to sums of squared test quantities (Q) and square to sums of absolute values
(Q′); open points represent Qabs (Q ′

abs
), while filled symbols represent Qrel (Q ′

rel
).

In each case the data are fitted with OLS (wi = 1) and with WLS (wi = 1/x2
i
). The

exact standard errors in a and b are 0.05845/r1/2 and 0.007583/r1/2, respectively
for the homoscedastic model, and 0.002278/r1/2 and 0.009496/r1/2, respectively for
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s
∑[

(xci − xi)/xi

]
= 0. It is for these reasons that Qabs and Qrel are

redisposed to favor data fitted with wi = 1 and 1/x2
i
, respectively,

egardless of the actual error structure for those data. In many cal-
bration situations the intercept a is small enough to ensure that
here is little statistical difference between weighting as 1/x2 and
/y2, except that with the latter and noisy data, it may be neces-
ary to iterate the weights, since it is better to evaluate these using
calc,i = a + bxi than the measured yi [37]. There is also an obvious
roblem with including a blank value, xi = 0, when weighting as
/x2.

. Monte Carlo calculations

The MC computations were done using methods that have been
ully described in other recent works [17,37,38]. As was already
oted, the model was constructed to resemble that employed in
ef. [8], with xi values at 0.1, 0.5, 1, 2.5, 5, 10, and 15. The inter-
ept and slope were taken as −0.005 and 0.28, respectively. The
ynthetic data were obtained by adding random Gaussian error to
he true y value at each xi; this error had � = 0.1 (homoscedastic

odel) or � = 0.02xi (heteroscedastic). (While specific values are
equired for these computations, their magnitudes have no effect
n the results of the Q tests.) Each data set could contain as many as
replicates at each xi value, and these could be partitioned into cal-

bration and test data. The calibration data were then fitted by OLS,
nd by WLS using wi = 1/x2

i
; and in each case the Q coefficients

ere computed for the test data and were then used to pick a pre-
erred weighting. For example, fitting homoscedastic data with OLS
nd WLS yields Qabs,O, Qabs,W, Qrel,O, and Qrel,W. If Qabs,W/Qabs,O > 1,
he data were deemed to be homoscedastic (a correct decision);
f this ratio was <1, they were designated heteroscedastic (incor-
ect). Similarly, if Qrel,W/Qrel,O < 1, the data were heteroscedastic
wrong), etc. For the purpose of these tests, the Q and Q′ coeffi-
ients were treated separately. The wrong decisions resulting from
he Q tests were accumulated to yield an overall error rate for each

C run.
Since the error rates are the result of a yes/no decision, they

ollow binomial statistics, according to which the expected mean
or a particular outcome having probability p is pN, and the vari-
nce is Np(1 − p) [16,39]. When p is expressed as a percent P,
he corresponding uncertainty (%) is N−1/2[P(100 − P)]1/2. Thus, for
xample, with N = 105 and p = 0.5, the expected mean is 5 × 104 and
= 158, yielding P = 50.00 ± 0.16%. The error drops as P increases

r decreases, yielding, e.g., 3.000 ± 0.054% when p = 0.03. These
ampling-based uncertainties are too small to show in the graphical
llustrations of the results given below.

The computations were programmed in FORTRAN and run on a
ompaq laptop computer. MC runs of 105 data sets took typically
–30 s, depending on the number of replicates (up to 8).

. Results and discussion

Fig. 1 shows the results of the Q tests for the two data error
tructures, as a function of the number of replicate data sets, with
ll calibration data both fitted and used to compute the Q values.
ith a single set of 6 calibration points, each data model confirms

ts own error structure more than 99.9% of the time, when tested
ith its “own” Q. At the same time, it gives the wrong decision

bout as often when tested with the other Q. To be more specific,

omoscedastic data almost always yield a smaller Qabs when fit-
ed with OLS than with WLS (as they should). But the same data
lmost as often yield a smaller Qrel when fitted with WLS (hence
he wrong decision). The same holds for the heteroscedastic data,
ow giving the right result almost always when tested with Qrel

f
a
F
d
t

eteroscedastic, where r is the number of fitted replicates. Note logarithmic scales
o left for the small error rates near bottom in each grid, and absolute scales (right)
or the large error rates at top.

ut wrong when tested with Qabs. The summing of absolute values
yielding Q′) instead of squares is less definitive in both direc-
ions.

This behavior can be seen as a consequence of the importance
f the end points. WLS ensures that the first residual will be small
egardless of the true error structure; at the same time it allows the
ast residual to become large. Accordingly, the Qabs test strongly
refers OLS for both error structures, while Qrel just as strongly
refers WLS, confirming the self-fulfilling nature of these tests.
hese tendencies are reduced somewhat when replicates are taken
ut are still strong, in disagreement with my earlier speculations
17].

Partitioning the replicates into calibration and test data does not
olve the problem, as shown in Fig. 2. The number of wrong deci-
ions is greatly reduced but is still significant (∼40%) in both cases;
nd the preference for the correct decision under proper weighting
s somewhat reduced. The dependence on the manner in which the
eplicates are partitioned is surprisingly weak.

Closer examination of the statistics of the Q tests suggests a way
f combining the absolute and relative tests in a way that greatly
educes the overall error rate. The preference for the correct weight-
ng is on average much stronger than the (erroneous) preference
or the wrong weighting. For example, with 5 replicates, all fitted

nd all used to compute the needed Qs for the points at X = 5 in
igs. 1 and 2, the average value of Qrel,O/Qrel,W for heteroscedastic
ata is 19.8, while that for Qabs,O/Qabs,W is 0.94 ± 0.09. The latter
ranslates into an error rate of 79%, but if the two tests are com-
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ig. 2. Testing of data for 5 replicates, partitioned into the indicated number of test
ets, with the remainder being fitted to obtain the calibration curve. The last points
re reproduced from Fig. 1, for 5 replicate sets being used for both the calibration fit
nd the test calculations. Other quantities are as indicated in the caption to Fig. 1.

ined, using a product of the two ratios, the former wins out most
f the time, yielding an overall error rate of only 1.4%. A similar
ehavior occurs for homoscedastic data, but the discrimination is

ess efficient, as shown in Fig. 3. With this combined test, use of

ll replicates for both fitting and testing gave better discrimina-
ion than partitioning into calibration and test sets, so results are
hown just for the former case. Again, Q′ rarely performs as well
s Q. It is also interesting that there is little need for more than

ig. 3. Results of applying combined Q test to data that are homoscedastic (open
oints) or heteroscedastic (solid), using squared test quantities (Q, round) or abso-

ute values (Q′ , square). For each number of replicates, all data are both fitted and
sed to compute the Q values; partitioning into fit and test subsets yielded poorer
erformance. Note logarithmic ordinate scale.
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i = 1/x2
i
. Both histograms are well fitted by Gaussians and show no significant

ias in the average of a (=−0.005), but �a for the weighted fit is 75% larger than the
inimum-variance value (solid points and curve).

hree replicates, with performance actually deteriorating slightly
or more replicates in the case of heteroscedastic data.

The manner in which incorrect weighting affects the LS results
s worth examining in more detail, especially in light of the real-
zation that 1/x2 weighting must surely make the fitted line better

atch the data at the first calibration value (x = 0.1) in a given data
et. As Fig. 4 shows, this power is illusory, because when different,
tatistically equivalent data sets are similarly fitted, the resulting
values move in accord with the actual data, and the result is a

5% increase in �a over the minimum-variance value achieved with
roper weighting (OLS in this case). And yet, an analyst who uses Eq.
6) (scaled by s2

y) to estimate �a concludes that it is much smaller
han it actually is—43% of its true value. At the same time, the loss
f precision in the slope (not shown) is even greater—a factor of 8
ncrease in �b over minimum variance; but now the analyst using
q. (6) thinks it is even worse, by another factor of 3. These com-
arisons illustrate both of the consequences of incorrect weighting
oted earlier.

Since the present tests deal with the extremes of homo- and
eteroscedasticity for nontransformed data, we would expect the
iscriminating ability to be even worse for intermediate het-
roscedasticity. Accordingly, when the data (5 replicates, all fitted
nd used to compute Q) were given uncertainty �i ∝ x1/2 (wi = 1/x)
nd tested for weighting as 1, 1/x, and 1/x2, they yielded the correct
eighting at best 46.7% of the time (Qrel) and worst 41.3% (Qabs).

he same two Q tests preferred 1/x2 weighting in 50.8% of the cases
nd OLS in 51.0%, respectively—again illustrating the proclivity of
hese tests to select their own natural data type.

As an illustration of results for a single data set, the 30 data points
sed in the original calculations by Almeida et al. [8] were regener-
ted approximately from their paper and subjected to the Qrel, Qabs,
nd Q ′

abs tests in addition to the Q ′
rel test they used. Just the con-

tant, 1/x1/2, 1/x, and 1/x2 weightings were tested here. The Q ′
rel test

onfirmed their results (their Table 2), and the Qrel test preferred
/x2 weighting even more strongly. The Q ′

abs test also preferred 1/x2
eighting, but the Qabs test picked OLS over 1/x2 weighting. These
utcomes are all statistically consistent with results in Fig. 1 for het-
roscedastic data and 5 replicates. However, in the Q ′

abs test, 1/x2

eighting fared only very slightly better than 1/x, and Qabs picked
/x1/2 as best of all.
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. Conclusion

Monte Carlo computations on a simple linear calibration model
onfirm that quality coefficients widely used to choose optimal
eighting formulas fail miserably, because such coefficients are
redisposed to find homoscedasticity when they are based on
bsolute residuals and proportional error when they are based on
elative residuals. This conclusion is not much affected by parti-
ioning the data into calibration and test subsets. However, by using
oth the absolute and the relative Q tests, it is possible to discrim-

nate correctly in favor of truly heteroscedastic data (�i ∝ xi) with
n error rate <2%, and homoscedastic data with error <7%. The use
f squares of the test quantities yields slightly better performance
han absolute values.

Even though the new Q test proves fairly reliable, I do not recom-
end it, because it attempts to solve the problem of determining

he weighting formula the wrong way, and it tacitly assumes that
he weighting function is simpler than it likely is. The goal of such
fforts should be determination of the actual variance function for
he data, from which it follows that wi = 1/�2

i
. Data variance func-

ions almost always display constant � in the low-signal limit and
ften show proportional error in the high-signal limit [40–44]. In
ecent work I have shown that as few as three replicates at each of
calibration values suffice to determine a two-parameter variance

unction with enough reliability to yield negligible loss of preci-
ion in the subsequent calibration fit [37]. Thus, in many studies
here replicate data have been used to assess weighting formulas

hrough Q tests, the authors could and should have used the same
ata to determine the data variance function, thereby obtaining
ully reliable assessments of the weights for their calibration fits.

Those who have used Q tests based on relative residuals to
onclude that their chromatographic data have proportional error
hould not now despair that this test has deceived them, because
any studies of residuals have shown that chromatographic data

n typical working ranges are indeed dominated by proportional
rror. However, some of the most demanding analytical problems
ush the limits of detection, and in such cases the error in this limit
ecomes all-important. As already noted, homoscedasticity usu-
lly rules in the low-signal limit. This behavior has been confirmed
or HPLC data in a recent study of variance functions for several
nalytes over detection ranges spanning four orders of magnitude
45].
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